All functions

bigram_network

Generate bigram network

config_params

Constants for the package

cor_words()

Pairwise correlation of words in given dataset

count_bigrams()

Count bigrams in given dataset

create_conv1d_model()

Create 1-Dimensional Convolutional Network model object

create_lstm_model()

Create LSTM model object

freq_by_polarity

Query the dataset for frequency by polarity based on several filters

generate_embedding_matrix()

Generate Embedding Matrix for given word index

generate_training_data()

Generate training data

get_keyword_condition()

Make sub-clause for given keywords

get_predictions()

Get predictions for the given subset of data

get_time_condition()

Make sub-clause for given time range

get_tokenizer()

Get Tokenizer for tokenizing train/test data

get_user_list_condition()

Make sub-clause for given users

is_valid_sentiment_data_frame()

check if a data frame is valid sentiment data set

keras_config_params

Constants for keras model training

make_clause()

Make clause for given parameters

parse_glove_embeddings()

Parse glove embeddings

predict_polarity_keras

Predict polarity for the given dataset.

sentiment140_test

sentiment140_test test dataset from Sentiment140 (http://help.sentiment140.com/for-students/)

sentiment140_train

sentiment140_train training dataset from Sentiment140 (http://help.sentiment140.com/for-students/)

subsample_input_data()

subsample input data to max size

time_series

Generate time series plots to analyze data based on filters

train_conv1d_with_glove

Train 1-dimensional Convolution Network with Glove Embeddings

train_conv_1d

Train 1-dimensional Convolution Network

train_lstm

Train LSTM model

train_lstm_with_glove

Train LSTM model with Glove Embeddings

validate_list()

Method to validate a list

validate_sentiment_data_frame()

Method to validate a data frame

validate_time_range()

Method to validate input data

visualize_bigrams()

Generate network plot for bigram and counts

visualize_cor()

Generate network plot for words and their pairwise correlation

word_cor_network

Generate word correlation network